- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Matarić, Maja J (1)
-
Soleymani, Mohammad (1)
-
Zhou, Emily (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent works have demonstrated the effectiveness of machine learning (ML) techniques in detecting anxiety and stress using physiological signals, but it is unclear whether ML models are learning physiological features specific to stress. To address this ambiguity, we evaluated the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions. Specifically, we examine features extracted from electrocardiogram (ECG) and electrodermal (EDA) signals from the following three datasets: Anxiety Phases Dataset (APD), Wearable Stress and Affect Detection (WESAD), and the Continuously Annotated Signals of Emotion (CASE) dataset. We aim to understand whether these features are specific to anxiety or general to other high-arousal emotions through a statistical regression analysis, in addition to a within-corpus, cross-corpus, and leave-one-corpus-out cross-validation across instances of stress and arousal. We used the following classifiers: Support Vector Machines, LightGBM, Random Forest, XGBoost, and an ensemble of the aforementioned models. We found that models trained on an arousal dataset perform relatively well on a previously unseen stress dataset, and vice versa. Our experimental results suggest that the evaluated models may be identifying emotional arousal instead of stress. This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.more » « less
An official website of the United States government
